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One-year survival prediction models following ST-elevation

myocardial infarction: A comparative analysis of the Cox Frailty

Model and machine learning

Abstract

Background: The aim of this study was developing and comparative analyzing
prediction models using a Cox proportional hazards model with and without frailty,
random survival forests (RSF) and survival support vector regression (SVR).
Methods: In this study, 2800 patients with STEMI have been used and two machine
learning methods for survival analysis have been applied: RSF and SVR, then the Cox
model with and without frailty has been employed. The main outcome was 1-year
mortality after STEMI. In this study, 16 variables have missing data. After applying four
multiple imputation via chained equations methods, the “Sample” algorithm was
selected as the appropriate model with complete data and the modeling process was
continued with this data and Hazard Ratio (HR) were calculated.

Results: Overall, 1628 (58.1%) patients received primary percutaneous coronary
intervention and 737 (26.3%) received thrombolytic therapy. Based on the experimental
results, between all the models, the Cox with frailty model performed the best, with the
highest overall C-index (0.891) and time-dependent area under the curve (0.9134) and
the least Brier score (0.0458). Ever smoking (HR= 1.46), systolic blood pressure (HR=
0.98), left ventricular ejection fraction (HR= 0.96), glomerular filtration rate (HR=
0.96), and reperfusion therapy (No reperfusion HR= 2.71) independently associated
with 1-year mortality of STEMI patients.

Conclusion: The findings suggest that there are advantages in developing frailty models
further than the fundamental Cox proportional hazards regression for estimating the
likelihood of survival for STEMI patients to account for the unobserved heterogeneity
in grouped observations.
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Ischemic heart disease is the leading cause of death globally, responsible for 16.17%
of all fatalities (1). With a global frequency of 197 million cases, it was the primary
cause of 9.14 million deaths and 182 million years of life with a handicap in 2019 (2).
Ischemic heart disease, which accounts for 26.28% of all fatalities in Iran, is the main
cause of mortality. The acute coronary syndrome, which includes ST-segment elevation
myocardial infarction (STEMI), maybe the initial sign of ischemic heart disease and is
associated with high morbidity and death (3). There are regional variations in STEMI
mortality rates and treatment methods both within and between nations, indicating room
for improvement (4). Primary percutaneous coronary intervention (PPCI), thrombolysis,
and pharmaco-invasive (i.e., thrombolysis followed by angiography and, if required,
percutaneous coronary intervention [PCI]) are examples of contemporary reperfusion
therapies that are commonly employed (5).
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However, the most frequent cause of STEMI mortality in
low- and middle-income countries (LMICs), where 80% of
all cardiovascular deaths take place, is a lack of an adequate
care system (5). There is no consensus on the factors
predicting short-term mortality in cases of STEMI (6).
Numerous health-system-level and individual-level
variables can affect STEMI mortality, including time to
treatment, effectiveness of the ambulance system,
reperfusion strategy, in-hospital treatment, age, history of
heart disease, renal function, number of afflicted coronary
arteries, and known risk factors like diabetes mellitus,
hypertension, dyslipidemia, and tobacco use (6, 7).

In the statistical field of survival analysis, the time until
the occurrence of a certain event, such as the transition from
being alive to being dead, serves as the random variable.
This event reflects a qualitative change or the move from
one categorical state to another. Death is the event that is
most frequently researched in the field of biomedicine (8).
One of the main objectives of survival analysis is to
examine the time to the event of interest for patients with
certain predictors. It offers useful details about factors that
affect survival and can illuminate ways to extend patients'
lives. Such analysis also helps clinicians create appropriate
treatment plans for individuals with varied risk levels and
more effectively allocate resources (9). When time-to-event
statistics show that the event of interest may not be seen by
all subjects, censorship is a common problem that needs to
be properly dealt with. Subjects with unobserved event
times are referred to as censored (10, 11). Models based on
regression can be created using the parametric and semi-
parametric techniques including the Cox proportional
hazards model (12, 13). Biomedical research is increasingly
using machine learning (ML) techniques to analyze data
(10). But today's majority of machine learning techniques
are created for uncensored data. To adapt current ML
techniques to work with censored data, enormous amounts
of work are required (14). Several ML methods, such as the
survival tree model (15) and the support vector approach
(12), have been modified to handle survival data.

It is necessary to account linear/and nonlinear
relationships and complex interactions between biomarkers
and survival time for better modelling. In addition, the
support vector regression (SVR) algorithm has some
limitations regarding non-linear relationships and complex
interactions, may be its complexity to support large number
of subjects (instances) and censoring handling. However,
the random survival forests (RSF) model as a machine-
learning algorithm is capable of modeling complex
interactions and non-linear relationships in survival data. To
this end, a Cox PH regression was applied with and without

frailty and two ML methods such as RSF and SVR. Finally,
C-index, Brier score and time-dependent area under the
curve (AUC) for 1-years survival time of STEMI patients is
compared among these models. The primary objective of
modeling in this work was to predict survival and optimize
the concordance index (C-index) and time-dependent AUC,
irrespective of the method used for generating predictions.
As a result, we did not run the proportional hazards test
during the modeling phase (16).

Methods

Study setting, design, and participants: This registry-
based cohort study with the code of ethics:
IR.KUMS.REC.1400.272, included all adult patients (> 18
years) who presented with STEMI to Imam- Ali Hospital
from July 1, 2016 to September 19, 2019. Imam-Ali
Hospital is a cardiology training center in the city of
Kermanshah, affiliated to the Kermanshah University of
Medical Sciences, in Iran. This is the only 24/7 PPCI-
capable hospital in the province. Diagnosis was made by
cardiologists based on current guidelines (17). This is the
only 24/7 PPCl-capable hospital in the province. The
STEMI patients who were hospitalized more than 24-hours
before referring to Imam-Ali Hospital were excluded from
this registry. In this study, we also excluded patients with
out-of-hospital cardiac arrest. The eligible patients were
followed up 1 year after STEMI events. The sample size
was 2800. Written informed permission was signed by each
participant.

Baseline variables: In this cohort, skilled doctors and
nurses obtained demographic and clinical information from
patient and/or attendant interviews, including past medical
histories, the onset of symptoms, and transfers to Imam-Ali
Hospital. Direct admission (self-presentation) or referral
from other hospitals to Imam-Ali Hospital were both
documented. It was determined how long it took from the
start of a symptom to when the patient arrived at the
hospital. Based on self-reports of confirmed diagnoses by
healthcare members, a history of cardiovascular events
(prior myocardial infarction, stroke, or chronic heart
failure), coronary intervention (PCI or coronary artery
bypass graft surgery), diabetes, and hypertension were
documented. In addition to PPCI, pharmacoinvasive
procedures, thrombolysis alone, and none (no reperfusion),
the reperfusion therapies performed were documented.
Before or after admission to Imam-Ali Hospital,
thrombolysis was given. Hospital medical records were
used to collect details regarding the admission procedure,
hemodynamic status, electrocardiography data, medical
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treatment, laboratory testing, etc. Systolic blood pressure
(SBP) and heart rate (HR) were measured upon admission
to Imam-Ali Hospital and divided into two groups based on
the TIMI risk score categories (SBP: 100/ 100 mm Hg and
HR: > 100/ 100 bmp, respectively) (18). The calculation of
body mass index (BMI) involves dividing weight in
kilograms by the square root of height in meters. Lipid
profile and creatinine level was measured on the first day of
admission. We defined high low-density lipoprotein
cholesterol (LDL-C) as LDL-C > 160 mg/dL and low high-
density lipoprotein cholesterol (HDL-C) as HDL-C < 40
mg/dL in men and HDL-C < 50 mg/dL in women (19). The
CKD-EPT equation was used for the estimation of the
glomerular filtration rate (GFR) (20). Qualified medical
professionals verified the accuracy of all recorded data.
Death Event: Cardiovascular diseases are among the
world's top causes of demise. The formation of plaque in the
blood vessels, which restricts or blocks blood flow, renal
system malfunction, which raises creatinine levels, low salt
levels, changing ejection fraction, and other cardiac
abnormalities can all be causes of heart failure. Acute
myocardial infarction, gradual heart failure, sudden death,
or other circulatory irregularities can all result in death
depending on the severity of the aforementioned conditions.
Depending on a person's gender, color, and ethnicity, death
may take several forms.
Main outcome and follow-up period: The main outcome
was all-cause of 1-year mortality after STEMI. The hospital
records were used to collect data on in-hospital mortality.
The follow-up period is extended from the date of STEMI
diagnosis until death, loss-to-follow-up, or 1-year after
STEMI, whichever occurs first. In this study, time means
survival time of patients (days).
Data analysis:
Imputation methods: In most medical data sets, there is a
problem with missing data. The most typical method is to
eliminate the observations with missing data, which results
in a complete participant analysis. When the group removed
is a chosen subsample of the research population, that is,
when the values are not completely missing at random, this
method not only wastes data and loses power but also
creates biased results (21, 22). It has been demonstrated that
an ad hoc method can be used to replace missing data with
a fixed value, such as the mean (in the case of data that is
regularly distributed) or median of the observed values (in
the case of skewed data). Due to the use of a single value to
replace all missing data, this method may artificially reduce
variance and weaken correlations with other variables (23).
Use one of the several methods for imputing the missing
data as an alternative. The approach of multiple imputations

(MI) (24) is the most appealing of these since theoretical
and simulation studies have demonstrated that it produces
estimates with favorable statistical qualities, such as
efficiency and validity when the appropriate model is
specified for the imputation. Here, all of the imputation
techniques are predicated on the premise that data are
missing at random (25).

In multiple imputation, each missing value is replaced
with the M possible value, and finally the M complete
observation set is produced. The M value is usually chosen
between 5 and 10. The probability of a value being missed
may be influenced by observable data, which can offer
insight into the missing values and serve as a foundation for
imputation; nevertheless, this is independent of the
unobserved data (22). Multiple Imputation via Chained
Equations (MICE), one of the advancements in the field of
analysis of missing data, offered a strategy to deal with
missing data effectively. This approach uses partial
observations to impute missing data and is based on
likelihood. Even though this method yields more accurate
estimates, it still necessitates knowledge of computer
software, and explaining the processes to clinical audiences
that might be challenging. The MICE technique's basic idea
was to use the distribution of the seen data to estimate likely
values for the missing data, then add random components to
the predictions to account for uncertainty. Here, each
missing value is replaced by one of five values to provide
five sets of imputed data (26). To obtain a single Hazard
Ratio (HR) and Confidence Interval (CI), estimates
produced from imputed data sets were combined using
Rubin's method. Each data set was analyzed separately (24).
Missing data were imputed using the MICE package (27).
The MICE method is one of the best ways to handle missing
data, according to a thorough study (28); Additionally,
literature-based research indicates that the MICE method is
the most effective way to impute missing data (23).

In this study, 16 variables have missing data (figure 1)
(table 1). The possible value of M was considered equal to
five. According to the type of missing variables, which were
of the quantitative and qualitative types, a total of four
imputation algorithms with five models were developed.
The only difference between them was the approach utilized
to deal with missing data (table 2). In the development of all
the models, the Cox regression model was fitted to the data,
then the concordance index and Akaike information
criterion (AIC) were compared. Finally, the algorithm with
the highest value of concordance and the lowest value of
(AIC) were selected as the algorithm with suitable complete
data. After checking the results of table 2, model 2 of the
“Sample” algorithm was selected as the appropriate model
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with complete data, and the modeling process was
continued with this data.
Statistical analysis: Python (Scikit Survival) and R 4.3.1
were used for all statistical analyses. Since we included all
eligible patients in the experiment and used registry data,
we did not compute the sample size. Qualitative factors
were displayed as counts (percentages), whereas
quantitative data were given as means (SD). Cox
proportional-hazard modeling with and without frailty was
performed to determine predictors of 1-year mortality.
According to previously published mortality predictors,
potential variables for the study were chosen based on the
medical consultant's assessment of the approach (7, 18).
First, a rank logarithm test was used to determine the factors
affecting the patient survival time. All of the variables that
showed significance in the aforementioned test were then
included in the models, as were those that did not show
significance but had a p-value of less than 0.25. These
variables were age, Gender (female/male), Education
(illiterate, under diploma, upper diploma), History of MI,
History of CHF, History of stroke, History of PPCI, History
of CABG, ever smoking, diabetes, hypertension, LDL-C,
HDL-C, GFR, hemoglobin, BMI, MI type (anterior wall or
left bundle branch block/ others), admission, the highest
level of CK-MB, reperfusion therapy (primary PCI,
thrombolysis alone and no-reperfusion), LVEF, and
Systolic blood pressure. We reported HRs with 95%
confidence intervals (95% Cls) using Cox proportional
hazards models.
Cox PH model: Conventional survival models, like the
widely used Cox model, are usually developed from the
hazard function, which is the instantaneous likelihood of the
event of interest occurring within a restricted time frame (9).
As a result, the hazard ratio (HR) is commonly used to
express the treatment impact in traditional clinical studies
(29). The Cox proportional hazards model directly produces
HR, which is an estimator of relative risk and hazard rate
decrease across different groups. Let h(t | X) to the
hazard/failure function at time t given the covariates X; the
proportional hazards model (PHM) is expressed as:
h(t]X) =ho () exp (BX), (1)

Where hy (t) is the baseline hazard/failure function. X is
the vector of the covariates and B is the regression
coefficient vector (30).

Frailty model: The frailty model aims to identify and
address frailty using a method called the frailty model or the
model with frailty. This model of conditional risk
incorporates a multiplicative component. This phrase
suggests that one patient may be more fragile than another,
putting them at greater danger of passing away or having

their illness worsen. Using an unobserved random variable
w, known as frailty, the fundamental idea is to introduce the
dependence between the survival times t;, ..., t5 (31).

Regression models frequently employ random variables
to represent unobserved dependence in the data. When used
in survival analysis (also known as time-to-event outcome
analysis), these models are called shared frailty models.
Cluster members share an unobserved common risk, which
is represented by the frailty, a cluster-specific random
effect. According to these models, the failure times of
cluster members are believed to be independent since the
random frailty factor is thought to capture all within-cluster
dependence given the reported variables and the unobserved
frailty (32, 33).

In actuality, survival analysis areas frequently deal with
correlated or clustered failure time data. Dependency on the
observed failure time results from the subjects' shared
environment. Frailty creates reliance among the correlated
or clustered failure time data and is a useful tool for
representing the random effect shared by patients in the
same cluster (or group). The PHM frailty model (34) is:

h (t] X, @) = oi ho (1) exp (BXj)), )

Consider n independent clusters, with clusteri,i=1, ..
., n, having mi > 1 members. For member j of cluster i, let
Xjj be a vector of covariates.

The random effect shared by the correlation between the
outcomes within members of the ith cluster (group) is also
modeled by the frailty factor, ;. Because the gamma frailty
distribution is mathematically tractable, it has been used in
previous publications and packages. However, a restrictive
type of reliance is induced by the gamma hypothesis (32,
35). We used the Cox model without and with a gamma-
frailty survival method, based on the maximized integrated
log-likelihood and the Akaike information criterion (AIC).
Random survival forest: The Random Survival Forest
(RSF) and survival trees are two further methods for
handling the limited survival data. As it happens, random
forests have grown to be a very effective, well-liked, and
potent tool for survival analysis. One could think of the
random forest as a nonparametric machine-learning
technique (36).

The RSF approach uses a forest of survival trees to make
predictions, extending Breiman's random forest method to
right-censored survival data. Similar to classification and
regression situations, RSF is an ensemble learner that is
produced by averaging a tree base-learner. In survival
situations, a binary survival tree serves as the base learner,
and the ensemble learner is produced by averaging the
cumulative hazard functions of each tree's Nelson-Aalen
(37). RSF consists of four basic steps:



Caspian Journal of Internal Medicine 2025 (Autumn); 16(4): 775-790

A comparative analysis of the cox frailty model and machine learning

(1) Randomly select B bootstrap samples from the provided
dataset. The remaining data is referred to as the out-of-bag
(OOB) data since one-third of the training set's data is
absent from the bootstrapping sample. In this study
B=1,000.

(2) Create a survival tree for every sample by selecting a
subset of the variables at random. Next, split the nodes into
their child nodes using the candidate factors that maximize
the survival difference between child nodes. Three criteria
are used in this case to assess the survival difference: the
log-rank statistic, the gradient-based Breier score, and the
log-rank score. In this study, 3 candidate variables were
randomly selected out of all 24 variables.

(3) Extend the tree to its maximum size while requiring that
each terminal node have a specific amount of distinct
unfiltered patients. In this study, the minimum final node
size was equal to 15.

(4) Based on the Nelson-Aalen estimator, get the
cumulative hazard function (STEMI) for each terminal
node, and then obtain the ensemble of the OOB data by
averaging the STEMI of each tree (38).

The variable importance (VIMP) for x is the difference
between the prediction error for the initial ensemble and the
prediction error for the new ensemble produced by
randomizing the assignments for x (39). According to (39,
40) positive values denote variables with the capacity for
prediction (important values) while zero or negative values
denote variables that are not capable of prediction (not
important values).

For the RSF technique in this work, the two node
splitting criteria (log-rank splitting and random) were
utilized (table 3).

Support vector regression: Support Vector Regression
(SVR) is a supervised machine learning technique used for
regression tasks (41). SVR has also been applied to
censored regression issues, such as survival analysis (12,
42). The "support vectors" in SVR are the data points that
define the margin and are closest to the regression line.
When choosing the regression model, these factors are very
important. To put it briefly, SVR is a regression technique
that looks for a regression model that strikes a compromise
between fitting the data and preventing overfitting by
finding a margin around the projected values. Through the
selection of kernel functions, it may be tailored to different
problem domains and is especially helpful when working
with non-linear connections. The core principle of SVR is
to use a regularization parameter to minimize the &-
insensitive loss function, max (0, f (x;)- y; |-€). In this case,
the projected value and the actual value of i*" subject, and
also the allowable margin of the error are represented by the

letters f (x;), y;, and &, respectively (38). In the SVR model,
the clinical factors x, as a feature vector, explain the overall
survival time y. Then, y is tried to be stimated as a function
f of its mapped feature vector i.e., y=f(p(x)) + €, where ¢(.)
is referred to as the feature map function. Calculating the
feature map itself is uncommon because it typically
indicates a higher-dimensional space. As a result of
Mercer's theorem (43), the kernel k(x;, x;)=(x;)" @(x;)
directly calculates the inner product of associated feature
vectors of patients i and j, in the new maping space without
computing the mapping vector for each one separately. The
kernel is simply used to carry out the complete process of
training the model and producing predictions. The kernel
plays a significant role in constructing SVR models, and
various types of kernels are available. The linear kernel is
also given as k(x;, x;)=x;" x;(44).

We performed support vector analysis for datasets with

survival outcomes by package ‘survivalsvm’. The package
offers three different methods: The regression method
formulates the inequality requirements of the support vector
issue while accounting for censoring. The goal of the
ranking approach's inequality restrictions is to maximize the
concordance index for similar observation pairs. Regression
and ranking restrictions are combined into a single model in
the hybrid technique (40).
Harrell’s concordance index: The ratio of the
concordance pairs in the data to all the pairs is known as
Harrell's concordance index. It determines discrimination
and forecasts the probability that, out of two patients chosen
at random, the patient with the higher expected risk will
have longer intervals without events (45). If the projected
score is close to 0.5, choosing the patient who will
experience no events for the longest is no more accurate
than flipping a coin. The ideal value is one. In survival
analysis, it is frequently used to assess risk models.

Survival performance is gauged by Harrell's concordance
index. It specifically considers censoring the individuals
and does not depend on picking a specific time for the
model's evaluation. When calculating the error rate,
Harrell's concordance index, or C, is used as the input. Error
rates range from 0 to 1, where 1 represents perfect accuracy
and 0.5 represents a procedure that performs no better than
random guessing (39). The random Survival Forest package
was used by R 4.3.1 to analyze the data. RSF also extracted
1000 bootstrap samples from the generated data, developed
a tree for every bootstrapped data set, and divided a
predictor according to a survival-splitting criterion. 1,000
replications of each approach were used to generate
concordance error rates, which were then averaged to
determine the results.
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Time-dependent area under the curve (AUC): A model's
overall discriminative performance is evaluated by the C-
index, whereas the time-dependent AUC compares the
projected probabilities with the actual binary survival status
and the probability estimate of a death outcome of censored
observations at a period of interest. Perfect discrimination
is represented by a value of 1, while random guessing is
represented by a value of 0.5 for the time-dependent AUC
and the C-index (46).

Brier score: The average squared distances between the
observed survival status and the anticipated survival
probability are represented by the Brier score, which is
always a number between 0 and 1, with 0 being the greatest
possible value. It is used to assess the accuracy of a
predicted survival function at a specific time t (47). All
analyses were conducted using the full case data. Statistical
significance is defined as P- value < 0.05.

Table 1. Variables sorted by percentage of missing

Variables Percentage
HDL (mg/dL) 0.0639
Education 0.0600
LDL (mg/dL) 0.0468
LVEF 0.0354
BMI (kg/m?) 0.0296
CHF 0.0036
History of PPCI 0.0032
History of CABG 0.0032
Early Hb (g/dl) 0.0032
History of MI 0.0029
History of Stroke 0.0029
Sys BP (mm Hg) 0.0029

Variables Percentage
GFR_CKD (IU/L) 0.0025
Diabetes 0.0018
Peak CKMB 0.0018
Hypertension 0.0007
Gender 0.0000
Ever Smoking 0.0000
Perfusiontherapy 0.0000
Anterior MI 0.0000
Admission 0.0000
Outcome 0.0000
Time (days) 0.0000
Age (years) 0.0000

HDL: high-density lipoprotein, LDL: low-density lipoprotein, LVEF: left ventricular ejection fraction, BMI:

body mass index, CHF: congestive heart failure, PPCI: primary percutaneous coronary intervention, CABG:

coronary artery bypass surgery, Hb: hemoglobin, MI: myocardial infarction, Sys BP: systolic blood pressure,
GFR_CKD: glomerular filtration rate- chronic kidney disease, CKMB: creatine kinase-MB.

Table 2. Imputation methods based on the quantitative and qualitative variable type in the MICE function

Methods Symbol

Predictive mean matching PMM

Random sample from observed values Sample

M=5 Concordance(se) AIC
Modell 0.813 (0.0121) 4826.953

Model2  0.8094 (0.01228) 4839.06

Model3  0.8107 (0.01208) 4826.833
Model4  0.8087 (0.01223) 4839.405
Model5 0.8119 (0.01202) 4811.239
Modell  0.8176 (0.01214) 4419.951

Model2 0.8218 (0.01214)* 4402.058**

Model3  0.8125 (0.01218) 4487.099
Model4  0.8132 (0.01241) 4437.555
Model5 0.8181 (0.01199) 4433.494
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Missing data

0.06

0.05

0.04

0.03

0.02

0,01

0.00

Methods

Classification and regression trees

Random forest imputations

Symbol M=5 Concordance(se)

CART

Modell
Model2
Model3
Model4
Model5
Modell
Model2
Model3
Model4
Model5

0.8076 (0.01242)
0.8138 (0.01222)
0.8132 (0.01192)
0.8066 (0.01216)
0.8147 (0.01212)
0.8062 (0.0125)
0.8062 (0.0123)
0.8149 (0.01193)
0.818 (0.01178)
0.812 (0.01202)

* The highest value of concordance, ** The lowest value of Akaike information criterion (AIC).

Table 3. Hyperparameters for random survival forests

Hyperparameter

Number of trees

No. of variables tried at each split

Splitting rule

Value
500
3

Log-rank /Random

Training  0.1709299
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Figurel. The Structure of Missing data in this study
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Results

Of the 2800 patients, the mean age of the patients was
60.76+12.34 years and 2167 (77.4%) were males. Also,
2079 (73.9%) were directly admitted to Imam-Ali Hospital
and 731 (26.1%) were referred from other hospitals.
Overall, 1628 (58.1%) patients received PPCI and 737
(26.3%) received thrombolytic therapy. The median
duration of follow-up was 178.5 days. The only quantitative
variable was reported as the mean (standard deviation), and
the other qualitative variables were reported as the
frequency with percentage (table 4). We used the Cox PH
regression with and without the frailty correction on typical
patient hazard ratios (95% CI) and contrasted the results
with those derived from machine learning techniques. As
shown in table 5, the hazard ratio for ever smoking,
admission, systolic blood pressure, LVEF, GFR,
reperfusion therapy (No reperfusion) and Anterior MI was
significant in the Cox PH model with frailty. The frailty
model has also improved the model due to the relevance of
the variance of the random effect (0.59). In this study, we
split the dataset into 70% (1960 randomly selected patients)
for the training set, 30% (840 randomly selected patients)
for the test set. In the train and test set, the important
variables in the construction of the decision tree are shown
with positive values. By comparing the error rate value
obtained for the test set and the training set, and due to the

smallness and closeness of these values (table 3), we can
report the results of the decision tree well. Figure 2 & 3
shows the most important variables in the construction of
the decision tree for the subject and test datasets in STEMI
patients, which are almost the same. Ever smoking, LVEF,
systolic blood pressure, GFR, and reperfusion therapy in
training and test set was the most important. Finally, for the
survival support vector regression, we split the dataset into
70% (1960 randomly selected patients) for the training set,
30% (840 randomly selected patients) for the test set and
applied a regression approach. The kernel is a collection of
numerical functions used in SVR computations.
Information can be accepted as information by the kernel,
which can then transform it into the required structure.
Diverse piece functions are used in different SVR
computations. They can serve a variety of purposes. The
SVR kernels that we have examined here are linear, RBF,
polynomial, and clinical. The results of the 4 methods are
shown in table 6. Of the 4 methods, the Cox with frailty
model performed the best, with the highest overall C-index
and mean AUC and the least Brier score. The RSF models,
over 1 year’s follow-up, achieved a mean C-index of 0.8641
for testing. This means that the data is well-trained and
executed with high accuracy in the test phase. In survival
SVR between four kernels, the RBF kernel had a better
concordance index and mean AUC than others.

Table 4. Baseline characteristics of STEMI patients according to vital status.

Patient Died
(n = 305)

Patient Alive  Patient Missing
(n =2464) n=31)

Quantitative Variables

Age (years) 68.12 (12.74) 59.79 (11.95) 64.98 (14.1)

Body mass index (kg/m2) 25.28 (4.22) 26.35 (4.09) 25.12 (4.33)
Systolic blood pressure (mm Hg) 121.58 (34.77)  135.49 (29.48) 135.90 (27.70)

LVEF 30.54 (10.70) 38.47 (9.29) 35.33 (9.46)

Early Hemoglobin (g/dL) 14 (2.1) 14.83 (1.74) 14.65 (2.38)
LDL-C (mg/dL) 102.19 (35.08)  104.37 (30.68) 95.06 (25.25)

HDL-C (mg/dL) 41.34 (11.07) 41.37 (9.02) 39.81 (5.66)

Peak CK-MB (IU/L) 135.39 (137.83) 125.14 (117.05)  112.65 (87.31)

GFR (mL/min per 1.73m2) 53.73 (19.08) 70.23 (17.25) 64.80 (19.66)

Time (days) 69.67 (107.53) 365 -
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Patient Died Patient Alive  Patient Missing
(n=305) (n =2464) (n=31)

Qualitative Variables

Female 114 (37.4) 513 (20.8) 6 (19.4)
Gender
Male 191 (62.6) 1951 (79.2) 25 (80.6)
Yes 120 (60.7) 1234 (50.1) 17 (54.8)
Ever Smoker
No 185 (39.3) 1230 (49.9) 12 (45.2)
[lliterate 155 (61) 693 (29.2) 1 (20)
Education Under Diploma 67 (26.4) 998 (42.1) 3 (60)
Upper Diploma 32 (12.6) 682 (28.7) 1 (20)
Yes 92 (30.7) 490 (19.9) 7 (22.6)
Diabetes mellitus
No 208 (69.3) 1974 (80.1) 24 (77.4)
Yes 177 (58.4) 1011 (41) 16 (51.6)
Hypertension
No 126 (41.6) 1453 (59) 15 (48.4)
Yes 39 (13.1) 291 (11.8) 5(16.2)
History of MI
No 258 (86.9) 2173 (88.2) 26 (83.8)
Yes 17 (5.7) 75 (3) 2 (6.5)
History of CHF
No 280 (94.3) 2387 (97) 29 (93.5)
Yes 22 (7.4) 149 (6) 309.7)
History of PPCI
No 274 (92.6) 2315 (94) 28 (90.3)
Yes 37 (12.5) 106 (4.3) 5(16.1)
History of Stroke
No 260 (87.5) 2358(95.7) 26 (83.9)
Yes 12 (4) 78 (3.2) 1(3.2)
History of CABG
No 285 (96) 2385 (96.8) 30 (96.8)
Yes 191 (62.6) 1852 (75.2) 26 (83.9)
Direct admission to hospital
No 114 (37.4) 612 (24.8) 5(6.1)
Yes 81 (26.6) 1942 (78.8) 10 (32.3)
Anterior MI/LBBB
No 224 (73.4) 522 (21.2) 21 (67.7)
Primary PCI 123 (40.3) 1488 (60.4) 17 (54.8)
Reperfusion therapy Thrombolysis alone 63 (20.7) 665 (27) 9 (29)
No reperfusion 119 (39) 311 (12.6) 5(16.2)

HDL: high-density lipoprotein, LDL: low-density lipoprotein, LVEF: left ventricular ejection fraction, CHF: congestive heart failure, PPCI:
primary percutaneous coronary intervention, CABG: coronary artery bypass surgery, Hb: hemoglobin, MI: myocardial infarction, Sys BP:
systolic blood pressure, GFR_CKD: glomerular filtration rate- chronic kidney disease, CKMB: creatine kinase-MB. LBBB: left bundle
branch block.
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Table 5. Hazard ratio (HR) of factors affecting mortality in STEMI patients for the Cox PH model
without and with frailty

. . Cox PH with Frailty
Cox PH without Frailty ©

Factors

(95% CI)

(gamma distribution)
(95% CI)

Age (vear) 1.01 (1.00, 1.02) 1.01 (0.99, 1.02)
Gender 1.16 (1.00, 1.31) 1.21 (0.86, 1.69)
BMI (kg/m?) 0.98 (0.96, 1.00) 0.97 (0.94, 1.01)

Ever Smoking

1.40* (1.27, 1.53)

1.46* (1.11, 1.93)

Diabetes 1.24 (0.99, 1.77) 1.27 (0.95, 1.70)
Hypertension 1.27 (0.98, 1.74) 1.28 (0.97, 1.69)
Admission 1.51* (1.09, 1.94) 1.50* (1.15, 1.97)
Education (Reference: Illiterate) Under D?ploma 0.69 (0.55, 1.13) 0.68 (0.51, 1.07)
Upper Diploma 0.65(0.38, 1.12) 0.62 (0.35, 1.09)

History of MI 0.80 (0.50, 1.18) 0.77 (0.60, 1.00)
History of CHF 0.90 (0.53, 1.66) 0.94 (0.64, 1.106)
History of Stroke 1.42* (1.13, 1.61) 1.45 (0.96, 1.62)
History of PPCI 1.38 (0.84, 2.50) 1.48 (0.87, 1.62)
History of CABG 1.10 (0.58, 2.27) 1.15(0.79, 1.41)
Systolic blood pressure 0.98* (0.97, 0.98) 0.98* (0.98, 0.99)
LDL (mg/dL) 1.00 (0.99, 1.01) 1.00 (0.99, 1.01)
HDL (mg/dL) 0.99 (0.98, 1.01) 0.99 (0.98, 1.01)
Peak CKMB 1.00 (0.99, 1.01) 1.00 (0.99, 1.01)
LVEF 0.97* (0.95, 0.97) 0.96* (0.96, 0.97)

Early Hemoglobin 0.98 (0.91, 1.05) 0.98 (0.94, 1.01)
GFR_CKD 0.97* (0.96, 0.97) 0.96* (0.96, 0.97)
Thrombolysis 1.02 (0.77, 1.40) 1.01 (0.86, 1.17)

Reperfusion therapy (Reference: PPCI)

Anterior MI

Significance of the frailty variance

No reperfusion

2.49% (1.99, 3.67)

1.40% (1.13, 2.04)

2.71* (2.35, 2.63)

1.52* (1.26, 1.54)

0.00205*

*statistical signification (p-value <0.05). HDL: high-density lipoprotein, LDL: low-density lipoprotein, LVEF: left ventricular ejection fraction, CHF:
congestive heart failure, PPCI: primary percutaneous coronary intervention, CABG: coronary artery bypass surgery, Hb: hemoglobin, MI: myocardial

infarction, Sys BP: systolic blood pressure, GFR_CKD: glomerular filtration rate- chronic kidney disease, CKMB: creatine kinase-MB.
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Table 6. Comparison of evaluation criteria for each model

Models Concordance Index Brier Score Mean AUC

Cox model 0.8164 0.05921 0.8898

Cox model with Frailty 0.891* 0.0458** 0.9134*
Linear Kernel 0.8375 - 0.8857

RBF Kernel 0.8489 - 0.8975

Survival SVR

Polynomial Kernel 0.8423 - 0.8921

Cilinical Kernel 0.8352 - 0.8859

Random Survival Forest (testing) 0.8641 0.05318 0.8984

Survival support vector regression does not have access to the Brier score. Because only predicted a risk score, not a
probability. * The highest overall C-index and mean AUC. ** The least Brier score. RBF: radial basis function kernel,
or RBF kernel.
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Discussion

The Cox PH regression, unlike machine learning models,
considers the impact of censored records, such as
participants whose hazard behavior is unknown because
they were fired at the beginning of the data collection period
(left censoring) or dropped from the study or sample (right
censoring). The impact of clinical, behavioral, and
demographic factors on predicted time to death has
primarily been modeled in prior research employing the
Cox PH regression. These investigations, however, made
the assumption that there was no unobserved heterogeneity
arising from correlated data that would affect the likelihood
of the "hazard" occurring (48). To account for this violation,
shared frailty correction has been implemented in more
recent research (49). Support vector regression is a subset
of data mining techniques that has the ability to work with
high-dimensional data and also does not require a priori
testing of events. This technique, with changes in the
objective function and constraints, also has the ability to
work with censored data such as survival data and is called
survival support vector regression. On the other hand,
survival tree is a new method for analyzing survival data,
which aimed to divide individuals into groups that are
homogeneous in terms of survival rate.

In this study, both RSF and SVR methods for survival
analysis were considered and compared with the Cox PH
model with and without frailty using the STEMI datasets.
Performance improvements were partially significant for
the Cox model with frailty when compared to the RSF and
survival SVR models. Analysis of more intricate and
nonlinear  relationships  between  high-dimensional
variables, such as genetic data, can be facilitated by machine
learning techniques. The assumption of Cox proportional
hazards model is that the hazard function for each individual
is proportional to the basine hazard, h0(t). This assumption
suggests that the covariate vector determines the hazard
function in its entirety; nevertheless, this assumption may
be broken by unseen covariates. The issue is that the
unobservable individual-level characteristics cause
heterogeneity in the data. The assumption of proportional
hazards is broken since our model is unable to account for
individual-level factors; this issue can be resolved by
employing a frailty model. One way to explain the
unaccounted-for heterogeneity is through frailty models
(50). Prior research on machine learning's application to
CVD risk prediction primarily used data from China,
Europe, and the United States. We conducted a registry-
based cohort study at Imam-Ali Hospital in Kermanshah,
Iran, which comprised consecutive STEMI patients from
2016 to 2019. Both with and without the frailty correction,

which accounts for the constraints of the Cox estimate, we
estimated patient survival using the Cox PH regression. A
comparison was made between the results of the two Cox
PH regression models, one with and one without the frailty
correction. The results demonstrate that the frailty
adjustment improved the performance of the basic Cox PH
model, which was statistically significant in our study. Cox
PH, either with or without shared frailty, is frequently
utilized in the healthcare industry in general and in heart
failure investigations in particular. Abrahantes and Legrand
(51) provide an overview of time-to-event models and
analyses of different frailty multiplier distributions. In the
same institution, Gasperoni, and Ieva (52) used the Cox PH
with frailties that are typical of heart failure patients.
Toenges and Miitze (53) exploited shared frailty to explain
the relationship between the two analyzed events
hospitalization for heart failure and coronary artery
mortality. Reese, Roman (54) modeled the time to
cardiovascular illness among American Indians who were
monitored for up to 20 years in a recent publication. Using
shared frailty, they adjusted for participant family ties. In
the beginning, the Cox PH regression was created to predict
the time until death for actuarial calculations (55). Since
then, a lot of studies (49, 56, 57) have employed it for
survival analyses where mortality was the target variable.
The largest Australian study to create machine learning-
based risk prediction models for both cardiovascular
mortality and hospitalization for Ischemic Heart Disease
(IHD) was conducted by H. Wang et al. They compared
various machine learning algorithms, such as survival
methods (SVM, Cox regression, random survival forest, and
neural network) and traditional classification methods
(SVM, logistic regression, random forest, and random
forest). The optimal model for cardiovascular mortality,
after examining various data re-sampling techniques, ratios,
and classification approaches, was a Cox survival
regression with an L1 penalty, utilizing a re-sampled
case/non-case ratio of 0.3 through the under-sampling of
non-cases.Harrel's and Uno's concordance indices for this
model were 0.900 and 0.898, respectively. At a re-sampled
case/non-case ratio of 1.0, a Cox survival regression with
L1 penalty was the most effective model for IHD
hospitalization, with Uno's and Harrel's concordance
indices of 0.711 and 0.718, respectively (58). For survival
analysis, Kim et al. used two machine learning techniques,
RSF and SVM, and evaluated how well they predicted
outcomes using the two datasets. They, after comparing the
three approaches, it was determined that the Cox model,
RSF, and SVM performed better with mixed datasets than
with unmixed datasets. The C-index and 1-year time-
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dependent areas under the curve for the Cox model were
0.644, 0.6 respectively (38). Based on the feature
importance analysis, we were able to determine which
characteristics contributed most to the prediction of a higher
risk of cardiovascular death. Ever smoking, systolic blood
pressure, LVEF, GFR and reperfusion therapy are the most
important variables that predict mortality in STEMI
patients. In other studies, these variables could be
independently associated with a 1-year mortality of STEMI
patients (59-62). Our results show how methodological
research could advance healthcare by developing better
models. The frailty correction is a less prevalent survival
analysis technique than the Cox PH regression, which is
possibly the most widely employed in medicine. In the
STEMI domain, there are even fewer scientific and practical
similarities between these two models. The results indicate
that advancing frailty models beyond the basic Cox
proportional hazards regression offers benefits in estimating
survival probabilities for STEMI patients and potentially
other chronic conditions, addressing the unobserved
heterogeneity in grouped data. The Cox PH assumptions
should be further examined in future research, and
suggestions for improvements to the model's performance
should be made. Comparing the outcomes of the present
models to other algorithms, like Kernel learning, might be
another future direction.

Assuming that this expanded collection is now possible
due to the widespread use of health information systems in
hospitals that offer thorough and longitudinal data, we
selected the 22 most significant features for this paper—
more than are often included in other studies. Future studies
can extend these techniques to other chronic diseases and
simulate the frailty correct utilizing the competing risks of
several events, including death and readmissions. Because
only one hospital's patients were included in the study, its
external validity is constrained. Additional datasets from
other hospitals should be reproduced to improve the results'
generalizability. Furthermore, hospitalized patients may not
be representative of the typical STEMI patient because they
are typically more seriously unwell. Therefore, more acute
individuals are more affected by the outcomes. Future
studies should integrate community and hospital patient
records to provide a more comprehensive picture of patients'
health. This will make it possible to apply the frailty model
to different dataset stratifications.
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