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One-year survival prediction models following ST-elevation 

myocardial infarction: A comparative analysis of the Cox Frailty 

Model and machine learning   
 

Abstract  

Background: The aim of this study was developing and comparative analyzing 

prediction models using a Cox proportional hazards model with and without frailty, 

random survival forests (RSF) and survival support vector regression (SVR). 

Methods: In this study, 2800 patients with STEMI have been used and two machine 

learning methods for survival analysis have been applied:  RSF and SVR, then the Cox 

model with and without frailty has been employed. The main outcome was 1-year 

mortality after STEMI. In this study, 16 variables have missing data. After applying four 

multiple imputation via chained equations methods, the “Sample” algorithm was 

selected as the appropriate model with complete data and the modeling process was 

continued with this data and Hazard Ratio (HR) were calculated. 

Results: Overall, 1628 (58.1%) patients received primary percutaneous coronary 

intervention  and 737 (26.3%) received thrombolytic therapy. Based on the experimental 

results, between all the models, the Cox with frailty model performed the best, with the 

highest overall C-index (0.891) and time-dependent area under the curve (0.9134) and 

the least Brier score (0.0458). Ever smoking (HR= 1.46), systolic blood pressure (HR= 

0.98), left ventricular ejection fraction (HR= 0.96), glomerular filtration rate (HR= 

0.96), and reperfusion therapy (No reperfusion HR= 2.71) independently associated 

with 1-year mortality of STEMI patients. 

Conclusion: The findings suggest that there are advantages in developing frailty models 

further than the fundamental Cox proportional hazards regression for estimating the 

likelihood of survival for STEMI patients to account for the unobserved heterogeneity 

in grouped observations.  
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Ischemic heart disease is the leading cause of death globally, responsible for 16.17% 

of all fatalities (1). With a global frequency of 197 million cases, it was the primary 

cause of 9.14 million deaths and 182 million years of life with a handicap in 2019 (2). 

Ischemic heart disease, which accounts for 26.28% of all fatalities in Iran, is the main 

cause of mortality. The acute coronary syndrome, which includes ST-segment elevation 

myocardial infarction (STEMI),  maybe the initial sign of ischemic heart disease and is 

associated with high morbidity and death (3). There are regional variations in STEMI 

mortality rates and treatment methods both within and between nations, indicating room 

for improvement (4). Primary percutaneous coronary intervention (PPCI), thrombolysis, 

and pharmaco-invasive (i.e., thrombolysis followed by angiography and, if required, 

percutaneous coronary intervention [PCI]) are examples of contemporary reperfusion 

therapies that are commonly employed (5).  

https://caspjim.com/article-1-4599-en.html
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However, the most frequent cause of STEMI mortality in 

low- and middle-income countries (LMICs), where 80% of 

all cardiovascular deaths take place, is a lack of an adequate 

care system (5). There is no consensus on the factors 

predicting short-term mortality in cases of STEMI (6). 

Numerous health-system-level and individual-level 

variables can affect STEMI mortality, including time to 

treatment, effectiveness of the ambulance system, 

reperfusion strategy, in-hospital treatment, age, history of 

heart disease, renal function, number of afflicted coronary 

arteries, and known risk factors like diabetes mellitus, 

hypertension, dyslipidemia, and tobacco use (6, 7). 

In the statistical field of survival analysis, the time until 

the occurrence of a certain event, such as the transition from 

being alive to being dead, serves as the random variable. 

This event reflects a qualitative change or the move from 

one categorical state to another. Death is the event that is 

most frequently researched in the field of biomedicine (8). 

One of the main objectives of survival analysis is to 

examine the time to the event of interest for patients with 

certain predictors. It offers useful details about factors that 

affect survival and can illuminate ways to extend patients' 

lives. Such analysis also helps clinicians create appropriate 

treatment plans for individuals with varied risk levels and 

more effectively allocate resources (9). When time-to-event 

statistics show that the event of interest may not be seen by 

all subjects, censorship is a common problem that needs to 

be properly dealt with. Subjects with unobserved event 

times are referred to as censored (10, 11). Models based on 

regression can be created using the parametric and semi-

parametric techniques including the Cox proportional 

hazards model (12, 13). Biomedical research is increasingly 

using machine learning (ML) techniques to analyze data 

(10). But today's majority of machine learning techniques 

are created for uncensored data. To adapt current ML 

techniques to work with censored data, enormous amounts 

of work are required (14). Several ML methods, such as the 

survival tree model (15) and the support vector approach 

(12), have been modified to handle survival data. 

It is necessary to account linear/and nonlinear 

relationships and complex interactions between biomarkers 

and survival time for better modelling. In addition, the 

support vector regression (SVR) algorithm has some 

limitations regarding non-linear relationships and complex 

interactions, may be its complexity to support large number 

of subjects (instances) and censoring handling. However, 

the random survival forests (RSF) model as a machine-

learning algorithm is capable of modeling complex 

interactions and non-linear relationships in survival data. To 

this end, a Cox PH regression was applied with and without 

frailty and two ML methods such as RSF and SVR. Finally, 

C-index, Brier score and time-dependent area under the 

curve (AUC) for 1-years survival time of STEMI patients is 

compared among these models. The primary objective of 

modeling in this work was to predict survival and optimize 

the concordance index (C-index) and time-dependent AUC, 

irrespective of the method used for generating predictions. 

As a result, we did not run the proportional hazards test 

during the modeling phase (16). 

 

 

Methods  

Study setting, design, and participants: This registry-

based cohort study with the code of ethics: 

IR.KUMS.REC.1400.272, included all adult patients (> 18 

years) who presented with STEMI to Imam- Ali Hospital 

from July 1, 2016 to September 19, 2019. Imam-Ali 

Hospital is a cardiology training center in the city of 

Kermanshah, affiliated to the Kermanshah University of 

Medical Sciences, in Iran. This is the only 24/7 PPCI-

capable hospital in the province. Diagnosis was made by 

cardiologists based on current guidelines (17). This is the 

only 24/7 PPCI-capable hospital in the province. The 

STEMI patients who were hospitalized more than 24-hours 

before referring to Imam-Ali Hospital were excluded from 

this registry. In this study, we also excluded patients with 

out-of-hospital cardiac arrest. The eligible patients were 

followed up 1 year after STEMI events. The sample size 

was 2800. Written informed permission was signed by each 

participant. 

Baseline variables: In this cohort, skilled doctors and 

nurses obtained demographic and clinical information from 

patient and/or attendant interviews, including past medical 

histories, the onset of symptoms, and transfers to Imam-Ali 

Hospital. Direct admission (self-presentation) or referral 

from other hospitals to Imam-Ali Hospital were both 

documented. It was determined how long it took from the 

start of a symptom to when the patient arrived at the 

hospital. Based on self-reports of confirmed diagnoses by 

healthcare members, a history of cardiovascular events 

(prior myocardial infarction, stroke, or chronic heart 

failure), coronary intervention (PCI or coronary artery 

bypass graft surgery), diabetes, and hypertension were 

documented. In addition to PPCI, pharmacoinvasive 

procedures, thrombolysis alone, and none (no reperfusion), 

the reperfusion therapies performed were documented. 

Before or after admission to Imam-Ali Hospital, 

thrombolysis was given. Hospital medical records were 

used to collect details regarding the admission procedure, 

hemodynamic status, electrocardiography data, medical 
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treatment, laboratory testing, etc. Systolic blood pressure 

(SBP) and heart rate (HR) were measured upon admission 

to Imam-Ali Hospital and divided into two groups based on 

the TIMI risk score categories (SBP: 100/ 100 mm Hg and 

HR: > 100/ 100 bmp, respectively) (18). The calculation of 

body mass index (BMI) involves dividing weight in 

kilograms by the square root of height in meters. Lipid 

profile and creatinine level was measured on the first day of 

admission. We defined high low-density lipoprotein 

cholesterol (LDL-C) as LDL-C > 160 mg/dL and low high-

density lipoprotein cholesterol (HDL-C) as HDL-C < 40 

mg/dL in men and HDL-C < 50 mg/dL in women (19). The 

CKD-EPT equation was used for the estimation of the 

glomerular filtration rate (GFR) (20). Qualified medical 

professionals verified the accuracy of all recorded data. 

Death Event: Cardiovascular diseases are among the 

world's top causes of demise. The formation of plaque in the 

blood vessels, which restricts or blocks blood flow, renal 

system malfunction, which raises creatinine levels, low salt 

levels, changing ejection fraction, and other cardiac 

abnormalities can all be causes of heart failure. Acute 

myocardial infarction, gradual heart failure, sudden death, 

or other circulatory irregularities can all result in death 

depending on the severity of the aforementioned conditions. 

Depending on a person's gender, color, and ethnicity, death 

may take several forms. 

Main outcome and follow-up period: The main outcome 

was all-cause of 1-year mortality after STEMI. The hospital 

records were used to collect data on in-hospital mortality. 

The follow-up period is extended from the date of STEMI 

diagnosis until death, loss-to-follow-up, or 1-year after 

STEMI, whichever occurs first. In this study, time means 

survival time of patients (days). 

Data analysis: 

Imputation methods: In most medical data sets, there is a 

problem with missing data. The most typical method is to 

eliminate the observations with missing data, which results 

in a complete participant analysis. When the group removed 

is a chosen subsample of the research population, that is, 

when the values are not completely missing at random, this 

method not only wastes data and loses power but also 

creates biased results (21, 22). It has been demonstrated that 

an ad hoc method can be used to replace missing data with 

a fixed value, such as the mean (in the case of data that is 

regularly distributed) or median of the observed values (in 

the case of skewed data). Due to the use of a single value to 

replace all missing data, this method may artificially reduce 

variance and weaken correlations with other variables (23). 

Use one of the several methods for imputing the missing 

data as an alternative. The approach of multiple imputations 

(MI) (24) is the most appealing of these since theoretical 

and simulation studies have demonstrated that it produces 

estimates with favorable statistical qualities, such as 

efficiency and validity when the appropriate model is 

specified for the imputation. Here, all of the imputation 

techniques are predicated on the premise that data are 

missing at random (25).  

In multiple imputation, each missing value is replaced 

with the M possible value, and finally the M complete 

observation set is produced. The M value is usually chosen 

between 5 and 10. The probability of a value being missed 

may be influenced by observable data, which can offer 

insight into the missing values and serve as a foundation for 

imputation; nevertheless, this is independent of the 

unobserved data (22). Multiple Imputation via Chained 

Equations (MICE), one of the advancements in the field of 

analysis of missing data, offered a strategy to deal with 

missing data effectively. This approach uses partial 

observations to impute missing data and is based on 

likelihood. Even though this method yields more accurate 

estimates, it still necessitates knowledge of computer 

software, and explaining the processes to clinical audiences 

that might be challenging. The MICE technique's basic idea 

was to use the distribution of the seen data to estimate likely 

values for the missing data, then add random components to 

the predictions to account for uncertainty. Here, each 

missing value is replaced by one of five values to provide 

five sets of imputed data (26). To obtain a single Hazard 

Ratio (HR) and Confidence Interval (CI), estimates 

produced from imputed data sets were combined using 

Rubin's method. Each data set was analyzed separately (24). 

Missing data were imputed using the MICE package (27). 

The MICE method is one of the best ways to handle missing 

data, according to a thorough study  (28); Additionally, 

literature-based research indicates that the MICE method is 

the most effective way to impute missing data (23).  

In this study, 16 variables have missing data (figure 1) 

(table 1). The possible value of M was considered equal to 

five. According to the type of missing variables, which were 

of the quantitative and qualitative types, a total of four 

imputation algorithms with five models were developed. 

The only difference between them was the approach utilized 

to deal with missing data (table 2). In the development of all 

the models, the Cox regression model was fitted to the data, 

then the concordance index and Akaike information 

criterion (AIC) were compared. Finally, the algorithm with 

the highest value of concordance and the lowest value of 

(AIC) were selected as the algorithm with suitable complete 

data. After checking the results of table 2, model 2 of the 

“Sample” algorithm was selected as the appropriate model 
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with complete data, and the modeling process was 

continued with this data. 

Statistical analysis: Python (Scikit Survival) and R 4.3.1 

were used for all statistical analyses. Since we included all 

eligible patients in the experiment and used registry data, 

we did not compute the sample size. Qualitative factors 

were displayed as counts (percentages), whereas 

quantitative data were given as means (SD). Cox 

proportional-hazard modeling with and without frailty was 

performed to determine predictors of 1-year mortality. 

According to previously published mortality predictors, 

potential variables for the study were chosen based on the 

medical consultant's assessment of the approach (7, 18). 

First, a rank logarithm test was used to determine the factors 

affecting the patient survival time. All of the variables that 

showed significance in the aforementioned test were then 

included in the models, as were those that did not show 

significance but had a p-value of less than 0.25. These 

variables were age, Gender (female/male), Education 

(illiterate, under diploma, upper diploma), History of MI, 

History of CHF, History of stroke, History of PPCI, History 

of CABG, ever smoking, diabetes, hypertension, LDL-C, 

HDL-C, GFR, hemoglobin, BMI, MI type (anterior wall or 

left bundle branch block/ others), admission, the highest 

level of CK-MB, reperfusion therapy (primary PCI, 

thrombolysis alone and no-reperfusion), LVEF, and 

Systolic blood pressure. We reported HRs with 95% 

confidence intervals (95% CIs) using Cox proportional 

hazards models. 

Cox PH model: Conventional survival models, like the 

widely used Cox model, are usually developed from the 

hazard function, which is the instantaneous likelihood of the 

event of interest occurring within a restricted time frame (9). 

As a result, the hazard ratio (HR) is commonly used to 

express the treatment impact in traditional clinical studies 

(29). The Cox proportional hazards model directly produces 

HR, which is an estimator of relative risk and hazard rate 

decrease across different groups. Let h(t│X) to the 

hazard/failure function at time t given the covariates X; the 

proportional hazards model (PHM) is expressed as: 

h (t│X) = h0 (t) exp (βX),         (1) 

Where h0 (t) is the baseline hazard/failure function. X is 

the vector of the covariates and β is the regression 

coefficient vector (30).  

Frailty model: The frailty model aims to identify and 

address frailty using a method called the frailty model or the 

model with frailty. This model of conditional risk 

incorporates a multiplicative component. This phrase 

suggests that one patient may be more fragile than another, 

putting them at greater danger of passing away or having 

their illness worsen. Using an unobserved random variable 

𝜔, known as frailty, the fundamental idea is to introduce the 

dependence between the survival times 𝑡1, ..., 𝑡𝑑 (31). 

Regression models frequently employ random variables 

to represent unobserved dependence in the data. When used 

in survival analysis (also known as time-to-event outcome 

analysis), these models are called shared frailty models. 

Cluster members share an unobserved common risk, which 

is represented by the frailty, a cluster-specific random 

effect. According to these models, the failure times of 

cluster members are believed to be independent since the 

random frailty factor is thought to capture all within-cluster 

dependence given the reported variables and the unobserved 

frailty (32, 33). 

In actuality, survival analysis areas frequently deal with 

correlated or clustered failure time data. Dependency on the 

observed failure time results from the subjects' shared 

environment. Frailty creates reliance among the correlated 

or clustered failure time data and is a useful tool for 

representing the random effect shared by patients in the 

same cluster (or group). The PHM frailty model (34) is: 

h (t│Xij , ωi) = ωi h0 (t) exp (βXij)),               (2) 

Consider n independent clusters, with cluster i, i = 1,  . . 

. , n, having mi ≥ 1 members. For member j of cluster i, let 

Xij be a vector of covariates. 

The random effect shared by the correlation between the 

outcomes within members of the ith cluster (group) is also 

modeled by the frailty factor, ωi. Because the gamma frailty 

distribution is mathematically tractable, it has been used in 

previous publications and packages. However, a restrictive 

type of reliance is induced by the gamma hypothesis (32, 

35). We used the Cox model without and with a gamma-

frailty survival method, based on the maximized integrated 

log-likelihood and the Akaike information criterion (AIC). 

Random survival forest: The Random Survival Forest 

(RSF) and survival trees are two further methods for 

handling the limited survival data. As it happens, random 

forests have grown to be a very effective, well-liked, and 

potent tool for survival analysis. One could think of the 

random forest as a nonparametric machine-learning 

technique (36).  

The RSF approach uses a forest of survival trees to make 

predictions, extending Breiman's random forest method to 

right-censored survival data. Similar to classification and 

regression situations, RSF is an ensemble learner that is 

produced by averaging a tree base-learner. In survival 

situations, a binary survival tree serves as the base learner, 

and the ensemble learner is produced by averaging the 

cumulative hazard functions of each tree's Nelson-Aalen 

(37). RSF consists of four basic steps:  
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(1) Randomly select B bootstrap samples from the provided 

dataset. The remaining data is referred to as the out-of-bag 

(OOB) data since one-third of the training set's data is 

absent from the bootstrapping sample. In this study 

B=1,000. 

(2) Create a survival tree for every sample by selecting a 

subset of the variables at random. Next, split the nodes into 

their child nodes using the candidate factors that maximize 

the survival difference between child nodes. Three criteria 

are used in this case to assess the survival difference: the 

log-rank statistic, the gradient-based Breier score, and the 

log-rank score. In this study, 3 candidate variables were 

randomly selected out of all 24 variables. 

(3) Extend the tree to its maximum size while requiring that 

each terminal node have a specific amount of distinct 

unfiltered patients. In this study, the minimum final node 

size was equal to 15. 

(4) Based on the Nelson-Aalen estimator, get the 

cumulative hazard function (STEMI) for each terminal 

node, and then obtain the ensemble of the OOB data by 

averaging the STEMI of each tree (38). 

The variable importance (VIMP) for x is the difference 

between the prediction error for the initial ensemble and the 

prediction error for the new ensemble produced by 

randomizing the assignments for x (39). According to (39, 

40) positive values denote variables with the capacity for 

prediction (important values) while zero or negative values 

denote variables that are not capable of prediction (not 

important values). 

For the RSF technique in this work, the two node 

splitting criteria (log-rank splitting and random) were 

utilized (table 3). 

Support vector regression: Support Vector Regression 

(SVR) is a supervised machine learning technique used for 

regression tasks (41). SVR has also been applied to 

censored regression issues, such as survival analysis (12, 

42). The "support vectors" in SVR are the data points that 

define the margin and are closest to the regression line. 

When choosing the regression model, these factors are very 

important. To put it briefly, SVR is a regression technique 

that looks for a regression model that strikes a compromise 

between fitting the data and preventing overfitting by 

finding a margin around the projected values. Through the 

selection of kernel functions, it may be tailored to different 

problem domains and is especially helpful when working 

with non-linear connections. The core principle of SVR is 

to use a regularization parameter to minimize the ℰ-

insensitive loss function, max (0,| f (𝑥𝑖)- 𝑦𝑖  |-ℰ). In this case, 

the projected value and the actual value of 𝑖𝑡ℎ subject, and 

also the allowable margin of the error are represented by the 

letters f (𝑥𝑖), 𝑦𝑖 , and ℰ, respectively (38). In the SVR model, 

the clinical factors x, as a feature vector, explain the overall 

survival time y. Then, 𝑦 is tried to be stimated as a function 

𝑓 of its mapped feature vector i.e., y=f(φ(x)) + ϵ, where φ(.) 

is referred to as the feature map function. Calculating the 

feature map itself is uncommon because it typically 

indicates a higher-dimensional space. As a result of 

Mercer's theorem (43), the kernel k(𝑥𝑖, 𝑥𝑗)=φ(𝑥𝑖)
T φ(𝑥𝑗)  

directly calculates the inner product of associated feature 

vectors of patients i and j, in the new maping space without 

computing the mapping vector for each one separately. The 

kernel is simply used to carry out the complete process of 

training the model and producing predictions. The kernel 

plays a significant role in constructing SVR models, and 

various types of kernels are available. The linear kernel is 

also given as k(𝑥𝑖, 𝑥𝑗)= 𝑥𝑖
𝑇𝑥𝑗(44).  

We performed support vector analysis for datasets with 

survival outcomes by package ‘survivalsvm’. The package 

offers three different methods: The regression method 

formulates the inequality requirements of the support vector 

issue while accounting for censoring. The goal of the 

ranking approach's inequality restrictions is to maximize the 

concordance index for similar observation pairs. Regression 

and ranking restrictions are combined into a single model in 

the hybrid technique (40). 

Harrell’s concordance index: The ratio of the 

concordance pairs in the data to all the pairs is known as 

Harrell's concordance index. It determines discrimination 

and forecasts the probability that, out of two patients chosen 

at random, the patient with the higher expected risk will 

have longer intervals without events (45). If the projected 

score is close to 0.5, choosing the patient who will 

experience no events for the longest is no more accurate 

than flipping a coin. The ideal value is one. In survival 

analysis, it is frequently used to assess risk models. 

Survival performance is gauged by Harrell's concordance 

index. It specifically considers censoring the individuals 

and does not depend on picking a specific time for the 

model's evaluation. When calculating the error rate, 

Harrell's concordance index, or C, is used as the input. Error 

rates range from 0 to 1, where 1 represents perfect accuracy 

and 0.5 represents a procedure that performs no better than 

random guessing (39). The random Survival Forest package 

was used by R 4.3.1 to analyze the data. RSF also extracted 

1000 bootstrap samples from the generated data, developed 

a tree for every bootstrapped data set, and divided a 

predictor according to a survival-splitting criterion. 1,000 

replications of each approach were used to generate 

concordance error rates, which were then averaged to 

determine the results. 
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Time-dependent area under the curve (AUC): A model's 

overall discriminative performance is evaluated by the C-

index, whereas the time-dependent AUC compares the 

projected probabilities with the actual binary survival status 

and the probability estimate of a death outcome of censored 

observations at a period of interest. Perfect discrimination 

is represented by a value of 1, while random guessing is 

represented by a value of 0.5 for the time-dependent AUC 

and the C-index (46). 

Brier score: The average squared distances between the 

observed survival status and the anticipated survival 

probability are represented by the Brier score, which is 

always a number between 0 and 1, with 0 being the greatest 

possible value. It is used to assess the accuracy of a 

predicted survival function at a specific time t (47). All 

analyses were conducted using the full case data. Statistical 

significance is defined as P- value < 0.05.

Table 1. Variables sorted by percentage of missing 

Variables Percentage Variables Percentage 

HDL (mg/dL) 0.0639 GFR_CKD (IU/L) 0.0025 

Education 0.0600 Diabetes 0.0018 

LDL (mg/dL) 0.0468 Peak CKMB 0.0018 

LVEF 0.0354 Hypertension 0.0007 

BMI (kg/m2) 0.0296 Gender 0.0000 

CHF 0.0036 Ever Smoking 0.0000 

History of PPCI 0.0032 Perfusiontherapy 0.0000 

History of CABG 0.0032 Anterior MI 0.0000 

Early Hb (g/dl) 0.0032 Admission 0.0000 

History of MI 0.0029 Outcome 0.0000 

History of Stroke 0.0029 Time (days) 0.0000 

Sys BP (mm Hg) 0.0029 Age (years) 0.0000 

HDL: high-density lipoprotein, LDL: low-density lipoprotein, LVEF: left ventricular ejection fraction, BMI: 

body mass index, CHF: congestive heart failure, PPCI: primary percutaneous coronary intervention, CABG: 

coronary artery bypass surgery, Hb: hemoglobin, MI: myocardial infarction, Sys BP: systolic blood pressure, 

GFR_CKD: glomerular filtration rate- chronic kidney disease, CKMB: creatine kinase-MB. 

 

Table 2. Imputation methods based on the quantitative and qualitative variable type in the MICE function 

Methods Symbol M=5 Concordance(se) AIC 

Predictive mean matching PMM 

Model1 0.813 (0.0121) 4826.953 

Model2 0.8094 (0.01228) 4839.06 

Model3 0.8107 (0.01208) 4826.833 

Model4 0.8087 (0.01223) 4839.405 

Model5 0.8119 (0.01202) 4811.239 

Random sample from observed values Sample 

Model1 0.8176 (0.01214) 4419.951 

Model2 0.8218 (0.01214)* 4402.058** 

Model3 0.8125 (0.01218) 4487.099 

Model4 0.8132 (0.01241) 4437.555 

Model5 0.8181 (0.01199) 4433.494 
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Methods Symbol M=5 Concordance(se) AIC 

Classification and regression trees CART 

Model1 0.8076 (0.01242) 4843.33 

Model2 0.8138 (0.01222) 4822.059 

Model3 0.8132 (0.01192) 4823.498 

Model4 0.8066 (0.01216) 4851.607 

Model5 0.8147 (0.01212) 4819.393 

Random forest imputations RF 

Model1 0.8062 (0.0125) 4843.204 

Model2 0.8062 (0.0123) 4844.868 

Model3 0.8149 (0.01193) 4770.057 

Model4 0.818 (0.01178) 4710.579 

Model5 0.812 (0.01202) 4819.87 

* The highest value of concordance, ** The lowest value of Akaike information criterion (AIC).  

 

Table 3. Hyperparameters for random survival forests 

Hyperparameter 
 

Value 

Number of trees 500 

No. of variables tried at each split 3 

Splitting rule Log-rank /Random 

(OOB) Requested performance error 
Training 0.1709299 

Test 0.1942646 

Out-of-Bag (OOB) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1. The Structure of Missing data in this study 
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Results 

Of the 2800 patients, the mean age of the patients was 

60.76±12.34 years and 2167 (77.4%) were males. Also, 

2079 (73.9%) were directly admitted to Imam-Ali Hospital 

and 731 (26.1%) were referred from other hospitals. 

Overall, 1628 (58.1%) patients received PPCI and 737 

(26.3%) received thrombolytic therapy. The median 

duration of follow-up was 178.5 days. The only quantitative 

variable was reported as the mean (standard deviation), and 

the other qualitative variables were reported as the 

frequency with percentage (table 4). We used the Cox PH 

regression with and without the frailty correction on typical 

patient hazard ratios (95% CI) and contrasted the results 

with those derived from machine learning techniques. As 

shown in table 5, the hazard ratio for ever smoking, 

admission, systolic blood pressure, LVEF, GFR, 

reperfusion therapy (No reperfusion) and Anterior MI was 

significant in the Cox PH model with frailty. The frailty 

model has also improved the model due to the relevance of 

the variance of the random effect (0.59). In this study, we 

split the dataset into 70% (1960 randomly selected patients) 

for the training set, 30% (840 randomly selected patients) 

for the test set. In the train and test set, the important 

variables in the construction of the decision tree are shown 

with positive values. By comparing the error rate value 

obtained for the test set and the training set, and due to the 

smallness and closeness of these values (table 3), we can 

report the results of the decision tree well. Figure 2 & 3 

shows the most important variables in the construction of 

the decision tree for the subject and test datasets in STEMI 

patients, which are almost the same. Ever smoking, LVEF, 

systolic blood pressure, GFR, and reperfusion therapy in 

training and test set was the most important. Finally, for the 

survival support vector regression, we split the dataset into 

70% (1960 randomly selected patients) for the training set, 

30% (840 randomly selected patients) for the test set and 

applied a regression approach . The kernel is a collection of 

numerical functions used in SVR computations. 

Information can be accepted as information by the kernel, 

which can then transform it into the required structure. 

Diverse piece functions are used in different SVR 

computations. They can serve a variety of purposes. The 

SVR kernels that we have examined here are linear, RBF, 

polynomial, and clinical. The results of the 4 methods are 

shown in table 6. Of the 4 methods, the Cox with frailty 

model performed the best, with the highest overall C-index 

and mean AUC and the least Brier score. The RSF models, 

over 1 year’s follow-up, achieved a mean C-index of 0.8641 

for testing. This means that the data is well-trained and 

executed with high accuracy in the test phase. In survival 

SVR between four kernels, the RBF kernel had a better 

concordance index and mean AUC than others.  

 

Table 4. Baseline characteristics of STEMI patients according to vital status. 

 
Patient Died 

(n = 305) 

Patient Alive 

(n = 2464) 

Patient Missing 

(n = 31) 

Quantitative Variables 

Age (years) 68.12 (12.74) 59.79 (11.95) 64.98 (14.1) 

Body mass index (kg/m2) 25.28 (4.22) 26.35 (4.09) 25.12 (4.33) 

Systolic blood pressure (mm Hg) 121.58 (34.77) 135.49 (29.48) 135.90 (27.70) 

LVEF 30.54 (10.70) 38.47 (9.29) 35.33 (9.46) 

Early Hemoglobin (g/dL) 14 (2.1) 14.83 (1.74) 14.65 (2.38) 

LDL-C (mg/dL) 102.19 (35.08) 104.37 (30.68) 95.06 (25.25) 

HDL-C (mg/dL) 41.34 (11.07) 41.37 (9.02) 39.81 (5.66) 

Peak CK-MB (IU/L) 135.39 (137.83) 125.14 (117.05) 112.65 (87.31) 

GFR (mL/min per 1.73m2) 53.73 (19.08) 70.23 (17.25) 64.80 (19.66) 

Time (days) 69.67 (107.53) 365 - 
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Patient Died 

(n = 305) 

Patient Alive 

(n = 2464) 

Patient Missing 

(n = 31) 

Qualitative Variables 

Gender 
Female 114 (37.4) 513 (20.8) 6 (19.4) 

Male 191 (62.6) 1951 (79.2) 25 (80.6) 

Ever Smoker 
Yes 120 (60.7) 1234 (50.1) 17 (54.8) 

No 185 (39.3) 1230 (49.9) 12 (45.2) 

Education 

Illiterate 155 (61) 693 (29.2) 1 (20) 

Under Diploma 67 (26.4) 998 (42.1) 3 (60) 

Upper Diploma 32 (12.6) 682 (28.7) 1 (20) 

Diabetes mellitus 
Yes 92 (30.7) 490 (19.9) 7 (22.6) 

No 208 (69.3) 1974 (80.1) 24 (77.4) 

Hypertension 
Yes 177 (58.4) 1011 (41) 16 (51.6) 

No 126 (41.6) 1453 (59) 15 (48.4) 

History of MI 
Yes 39 (13.1) 291 (11.8) 5 (16.2) 

No 258 (86.9) 2173 (88.2) 26 (83.8) 

History of CHF 
Yes 17 (5.7) 75 (3) 2 (6.5) 

No 280 (94.3) 2387 (97) 29 (93.5) 

History of PPCI 
Yes 22 (7.4) 149 (6) 3 (9.7) 

No 274 (92.6) 2315 (94) 28 (90.3) 

History of Stroke 
Yes 37 (12.5) 106 (4.3) 5 (16.1) 

No 260 (87.5) 2358(95.7) 26 (83.9) 

History of CABG 
Yes 12 (4) 78 (3.2) 1 (3.2) 

No 285 (96) 2385 (96.8) 30 (96.8) 

Direct admission to hospital 
Yes 191 (62.6) 1852 (75.2) 26 (83.9) 

No 114 (37.4) 612 (24.8) 5 (16.1) 

Anterior MI/LBBB 
Yes 81 (26.6) 1942 (78.8) 10 (32.3) 

No 224 (73.4) 522 (21.2) 21 (67.7) 

Reperfusion therapy 

Primary PCI 123 (40.3) 1488 (60.4) 17 (54.8) 

Thrombolysis alone 63 (20.7) 665 (27) 9 (29) 

No reperfusion 119 (39) 311 (12.6) 5 (16.2) 

HDL: high-density lipoprotein, LDL: low-density lipoprotein, LVEF: left ventricular ejection fraction, CHF: congestive heart failure, PPCI: 

primary percutaneous coronary intervention, CABG: coronary artery bypass surgery, Hb: hemoglobin, MI: myocardial infarction, Sys BP: 

systolic blood pressure, GFR_CKD: glomerular filtration rate- chronic kidney disease, CKMB: creatine kinase-MB. LBBB: left bundle 

branch block. 
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Table 5. Hazard ratio (HR) of factors affecting mortality in STEMI patients for the Cox PH model  

without and with frailty 

Factors 
Cox PH without Frailty  

(95% CI) 

Cox PH with Frailty 

(gamma distribution)  

(95% CI) 

Age (year)  1.01 (1.00, 1.02) 1.01 (0.99, 1.02) 

Gender  1.16 (1.00, 1.31) 1.21 (0.86, 1.69) 

BMI (kg/m2)  0.98 (0.96, 1.00) 0.97 (0.94, 1.01) 

Ever Smoking  1.40* (1.27, 1.53) 1.46* (1.11, 1.93) 

Diabetes  1.24 (0.99, 1.77) 1.27 (0.95, 1.70) 

Hypertension  1.27 (0.98, 1.74) 1.28 (0.97, 1.69) 

Admission  1.51* (1.09, 1.94) 1.50* (1.15, 1.97) 

Education (Reference: Illiterate) 
Under Diploma 

Upper Diploma 

0.69 (0.55, 1.13) 

0.65 (0.38, 1.12) 

0.68 (0.51,  1.07) 

0.62 (0.35, 1.09) 

History of MI  0.80 (0.50, 1.18) 0.77 (0.60, 1.00) 

History of CHF  0.90 (0.53, 1.66) 0.94 (0.64, 1.16) 

History of Stroke  1.42* (1.13, 1.61) 1.45 (0.96,  1.62) 

History of PPCI  1.38 (0.84, 2.50) 1.48 (0.87, 1.62) 

History of CABG  1.10 (0.58, 2.27) 1.15 (0.79, 1.41) 

Systolic blood pressure  0.98* (0.97, 0.98) 0.98* (0.98, 0.99) 

LDL (mg/dL)  1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 

HDL (mg/dL)  0.99 (0.98, 1.01) 0.99 (0.98, 1.01) 

Peak CKMB  1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 

LVEF  0.97* (0.95, 0.97) 0.96* (0.96, 0.97) 

Early Hemoglobin  0.98 (0.91, 1.05) 0.98 (0.94, 1.01) 

GFR_CKD  0.97* (0.96, 0.97) 0.96* (0.96, 0.97) 

Reperfusion therapy (Reference: PPCI) 
Thrombolysis 

No reperfusion 

1.02 (0.77, 1.40) 

2.49* (1.99, 3.67) 

1.01 (0.86, 1.17) 

2.71* (2.35, 2.63) 

Anterior MI  1.40* (1.13, 2.04) 1.52* (1.26, 1.54) 

Significance of the frailty variance  - 0.00205* 

*statistical signification (p-value <0.05). HDL: high-density lipoprotein, LDL: low-density lipoprotein, LVEF: left ventricular ejection fraction, CHF: 

congestive heart failure, PPCI: primary percutaneous coronary intervention, CABG: coronary artery bypass surgery, Hb: hemoglobin, MI: myocardial 

infarction, Sys BP: systolic blood pressure, GFR_CKD: glomerular filtration rate- chronic kidney disease, CKMB: creatine kinase-MB. 
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Table 6. Comparison of evaluation criteria for each model 

Models Concordance Index Brier Score Mean AUC 

Cox model 0.8164 0.05921 0.8898 

Cox model with Frailty 0.891* 0.0458** 0.9134* 

Survival SVR 

Linear Kernel 0.8375 - 0.8857 

RBF Kernel 0.8489 - 0.8975 

Polynomial Kernel 0.8423 - 0.8921 

Cilinical Kernel 0.8352 - 0.8859 

Random Survival Forest (testing) 0.8641 0.05318 0.8984 

Survival support vector regression does not have access to the Brier score. Because only predicted a risk score, not a 

probability. * The highest overall C-index and mean AUC. ** The least Brier score. RBF: radial basis function kernel, 

or RBF kernel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figher2. Error rate and variable importance in the training dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Error rate and variable importance in the test dataset 
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Discussion  

The Cox PH regression, unlike machine learning models, 

considers the impact of censored records, such as 

participants whose hazard behavior is unknown because 

they were fired at the beginning of the data collection period 

(left censoring) or dropped from the study or sample (right 

censoring). The impact of clinical, behavioral, and 

demographic factors on predicted time to death has 

primarily been modeled in prior research employing the 

Cox PH regression. These investigations, however, made 

the assumption that there was no unobserved heterogeneity 

arising from correlated data that would affect the likelihood 

of the "hazard" occurring (48). To account for this violation, 

shared frailty correction has been implemented in more 

recent research (49). Support vector regression is a subset 

of data mining techniques that has the ability to work with 

high-dimensional data and also does not require a priori 

testing of events. This technique, with changes in the 

objective function and constraints, also has the ability to 

work with censored data such as survival data and is called 

survival support vector regression. On the other hand, 

survival tree is a new method for analyzing survival data, 

which aimed to divide individuals into groups that are 

homogeneous in terms of survival rate. 

In this study, both RSF and SVR methods for survival 

analysis were considered and compared with the Cox PH 

model with and without frailty using the STEMI datasets. 

Performance improvements were partially significant for 

the Cox model with frailty when compared to the RSF and 

survival SVR models. Analysis of more intricate and 

nonlinear relationships between high-dimensional 

variables, such as genetic data, can be facilitated by machine 

learning techniques. The assumption of Cox proportional 

hazards model is that the hazard function for each individual 

is proportional to the basine hazard, h0(t). This assumption 

suggests that the covariate vector determines the hazard 

function in its entirety; nevertheless, this assumption may 

be broken by unseen covariates. The issue is that the 

unobservable individual-level characteristics cause 

heterogeneity in the data. The assumption of proportional 

hazards is broken since our model is unable to account for 

individual-level factors; this issue can be resolved by 

employing a frailty model. One way to explain the 

unaccounted-for heterogeneity is through frailty models 

(50). Prior research on machine learning's application to 

CVD risk prediction primarily used data from China, 

Europe, and the United States. We conducted a registry-

based cohort study at Imam-Ali Hospital in Kermanshah, 

Iran, which comprised consecutive STEMI patients from 

2016 to 2019. Both with and without the frailty correction, 

which accounts for the constraints of the Cox estimate, we 

estimated patient survival using the Cox PH regression. A 

comparison was made between the results of the two Cox 

PH regression models, one with and one without the frailty 

correction. The results demonstrate that the frailty 

adjustment improved the performance of the basic Cox PH 

model, which was statistically significant in our study. Cox 

PH, either with or without shared frailty, is frequently 

utilized in the healthcare industry in general and in heart 

failure investigations in particular. Abrahantes and Legrand 

(51) provide an overview of time-to-event models and 

analyses of different frailty multiplier distributions. In the 

same institution, Gasperoni, and Ieva (52) used the Cox PH 

with frailties that are typical of heart failure patients. 

Toenges and Mütze (53) exploited shared frailty to explain 

the relationship between the two analyzed events 

hospitalization for heart failure and coronary artery 

mortality. Reese, Roman (54) modeled the time to 

cardiovascular illness among American Indians who were 

monitored for up to 20 years in a recent publication. Using 

shared frailty, they adjusted for participant family ties. In 

the beginning, the Cox PH regression was created to predict 

the time until death for actuarial calculations (55). Since 

then, a lot of studies (49, 56, 57) have employed it for 

survival analyses where mortality was the target variable. 

The largest Australian study to create machine learning-

based risk prediction models for both cardiovascular 

mortality and hospitalization for Ischemic Heart Disease 

(IHD) was conducted by H. Wang et al. They compared 

various machine learning algorithms, such as survival 

methods (SVM, Cox regression, random survival forest, and 

neural network) and traditional classification methods 

(SVM, logistic regression, random forest, and random 

forest). The optimal model for cardiovascular mortality, 

after examining various data re-sampling techniques, ratios, 

and classification approaches, was a Cox survival 

regression with an L1 penalty, utilizing a re-sampled 

case/non-case ratio of 0.3 through the under-sampling of 

non-cases.Harrel's and Uno's concordance indices for this 

model were 0.900 and 0.898, respectively. At a re-sampled 

case/non-case ratio of 1.0, a Cox survival regression with 

L1 penalty was the most effective model for IHD 

hospitalization, with Uno's and Harrel's concordance 

indices of 0.711 and 0.718, respectively (58). For survival 

analysis, Kim et al. used two machine learning techniques, 

RSF and SVM, and evaluated how well they predicted 

outcomes using the two datasets. They, after comparing the 

three approaches, it was determined that the Cox model, 

RSF, and SVM performed better with mixed datasets than 

with unmixed datasets. The C-index and 1-year time-
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dependent areas under the curve for the Cox model were 

0.644, 0.6 respectively (38). Based on the feature 

importance analysis, we were able to determine which 

characteristics contributed most to the prediction of a higher 

risk of cardiovascular death. Ever smoking, systolic blood 

pressure, LVEF, GFR and reperfusion therapy are the most 

important variables that predict mortality in STEMI 

patients. In other studies, these variables could be 

independently associated with a 1-year mortality of STEMI 

patients (59-62). Our results show how methodological 

research could advance healthcare by developing better 

models. The frailty correction is a less prevalent survival 

analysis technique than the Cox PH regression, which is 

possibly the most widely employed in medicine. In the 

STEMI domain, there are even fewer scientific and practical 

similarities between these two models. The results indicate 

that advancing frailty models beyond the basic Cox 

proportional hazards regression offers benefits in estimating 

survival probabilities for STEMI patients and potentially 

other chronic conditions, addressing the unobserved 

heterogeneity in grouped data. The Cox PH assumptions 

should be further examined in future research, and 

suggestions for improvements to the model's performance 

should be made. Comparing the outcomes of the present 

models to other algorithms, like Kernel learning, might be 

another future direction. 

Assuming that this expanded collection is now possible 

due to the widespread use of health information systems in 

hospitals that offer thorough and longitudinal data, we 

selected the 22 most significant features for this paper—

more than are often included in other studies. Future studies 

can extend these techniques to other chronic diseases and 

simulate the frailty correct utilizing the competing risks of 

several events, including death and readmissions. Because 

only one hospital's patients were included in the study, its 

external validity is constrained. Additional datasets from 

other hospitals should be reproduced to improve the results' 

generalizability. Furthermore, hospitalized patients may not 

be representative of the typical STEMI patient because they 

are typically more seriously unwell. Therefore, more acute 

individuals are more affected by the outcomes. Future 

studies should integrate community and hospital patient 

records to provide a more comprehensive picture of patients' 

health. This will make it possible to apply the frailty model 

to different dataset stratifications. 
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